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Abstract--Second-law analysis on a pin-fin array under crossflow was conducted, from which the entropy 
generation rate was evaluated. Increase in the crossflow fluid velocity would enhance the heat transfer rate 
and hence, reduce the heat transfer irreversibility. Nevertheless, owing to the simultaneous increase in drag 
force exerting on the fin bodies, the hydrodynamic irreversibility increases as well. An optimal Reynolds 
number thereby exists over wide operating conditions. Optimal design/operational conditions were searched 
for on the basis of entropy generation minimized. Comparisons between the staggered and the in-line pin- 

fin alignments were made in this report. © 1997 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Pin-fin arrays are widely employed to enhance the 
heat transfer rate in the after-region of a turbine blade 
or in electronic equipment. In designing a fin array Uo I". 
the criterion generally adopted is either to maximize ~ , >  
the heat transfer rate under a given fin volume 
(weight), or to minimize the fin volume under a pre- 
scribed heat duty [2-5]. The enhancement of the heat 
transfer from a fin array had been discussed in refs. 
[6-8]. Some opt imum design methodologies for fin 
array under natural  convection were addressed in refs. 
[9, 10]. These studies were all based on heat transfer 
enhancement,  or on the first-law analysis. 

Recently, second-law analysis has influenced the 
design methodology of various heat and mass transfer 
systems [11, 12] to minimize the entropy generation 
rate, and so to maximize system available work. ~,U® 1", 

In the present work, the second-law analysis on the 1---" ~ 
I , /  

pin-fin arrays under  forced flow condition is 
considered. Optimal operational/design conditions 
are evaluated for both the in-line and the staggered 
fin alignments. The heat transfer configuration under 
investigation is similar, but  not  the same as that in ref. 
[13], in which the heat transfer from the fin surface was 
totally ignored. In this work, both the heat transfer 
contributions from the base wall from the fin surface 
are considered. 
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Fig. 1. Schematical drawing of the pin-fin arrays (top) in- 
line alignment (bottom) staggered alignment. 

2. ANALYSIS 

The alignment of the fin arrays (N rows × V col- 
umns) are schematically shown in Fig. 1. Assume a 
small fin Biot number  ( <  0.1), a Constant fin thermal 
conductivity, a constant  heat transfer coefficient and 

t Author to whom correspondence should be addressed. 

an insulating tip. The relationship between the total 
base heat flow rate (QB) and the temperature differ- 
ence between fin base and the fluid (On) could be found 
by solving the heat conduction/convection equation 
a s  

Q .  
0p - (1) 

/I" /'~ 2 N V k D 2 m  tanh(mg) + hw(A - g N V D  ) 
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NOMENCLATURE 

A overall area of wall defined in equation 
(2b) [m 2] 

B dimensionless group defined in 
equation (8), dimensionless 

D pin-fin diameter [m] 
f friction factor defined in equation (8), 

dimensionless 
h heat transfer coefficient [W m -2 K ~] 
k thermal conductivity of fin material, 

[W m -I K -~] 
L pin-fin length [m] 
m pin-fin conduction parameter defined 

in equation (2a), dimensionless 
N number of rows in a bank, 

dimensionless 
N~ entropy generation number, defined in 

equation (6), dimensionless 
Nu Nusselt number, dimensionless 
P pressure [N m 2] 
Pr Prandtl number, dimensionless 
QB total base heat flow rate [W] 

Re D Reynolds number, DUmax/V 

Sgen entropy generation rate [W K -  ~] 
Sn pin spacing in spanwise direction [m] 
Sp pin spacing in streamwise direction [m] 
T~ absolute temperature of free stream 

[K] 
Um,x average velocity in the minimum flow 

area [m s l] 
U~ crossflow approaching velocity [m s ~] 
V number of columns in a bank, 

dimensionless 
W slenderness ratio, dimensionless. 

Greek symbols 
0B base-stream temperature difference 

[K] 
2 thermal conductivity of fluid 

[W m -I K - ' ]  
v kinematic viscosity of fluid [m s-2] 
p density of fluid [kg m-3]. 

where 

m = \ kDJ  (2a) 

A = [ ( N - 1 ) S v + D ] [ ( V - a ) S , + D  ] (2b) 

and a is 1 or 1/2 for in-line for staggered fin arrays, 
respectively. The basic characteristics of the following 
results would not change for a fin with a non-insu- 
lating tip. 

Fin effectiveness can be evaluated as the ratio of the 
base heat flux with and without a fin. The result is : 

F //: 2 e = L~NVkD m tanh(mL) 

By assuming a OB/T~ < 0, the entropy generation 
rate for a fluid flowing across a submerged body has 
been stated as [11] : 

Qr~OB h A P  
Sgen - -  - -  -~- (4) 

T~ pT~ 

where AP is the pressure difference across the body, 
while 

rn = pUmaxL(V-a)(Sn-  D). (5) 

Um,x is the maximum average fluid velocity occurring 
at the minimum free area of the fin array. 

Substituting equations (1), (2) and (5) into equation 
(4), with the dimensionless entropy generation num- 

ber as defined in ref. [11], leads to the following equa- 
tion for a pin-fin array : 

Ns = Sgen = Nsn + NsF. (6) 
(Q~ Umax/kvT~) 

N~H is the entropy generation rate owing to heat trans- 
fer irreversibility and is equal to : 

N~H = {2 UV[Uu(2/k)]I/2 Reo 

x tanh [2Nu(2/k)] '/2 W] + Nuw (2/k) ReD (2.k) ReD 

Sp Sn 

~ N V } } .  (7a) 

NsF is due to the fluid flow irreversibility and is as 
follows : 

NsF = 5 BfN( V -  

The dimensionless groups appearing in equations (7a) 
and (7b) are defined as follows : 

hD hwD 
N u = ~ -  Nuw= 2 

U m a x O  U m a x L  
ReD -- Ree - (8) 

v v 
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Table 1. Values of C and n in equation (9) [14] 

Staggered arrays In-line arrays 
R e  D range C n C n 

10-100 

100-1000 

1000-2 x l0 s 

2 x 10 5 10  6 

(Sn/Sp) < 2 
(Sn/Sp) > 2 

0.8 0.4 0.9 0.4 

0.71 0.5 0.52 0.5 

0.35(Sp/Sn) o~ 0.6 0.27 0.63 
0.4 0.6 

O.031(Sp/S,) 02 0.88 0.03 0.8 

1939 

f =  

AP pv3kT~ L 
f I 2 B W 

5pUmaxN Q2 = D  

The Nusselt number (Nu) and the friction factor 
(f) can be evaluated from the results for a bank of 
tubes in a crossflow [14, 15]. The Nusselt number for 
N >/20 can be found as 

Nu = CRe~ Pr 0"36. (9) 

Values of C and n are listed in Table 1 [14]. The heat 
transfer coefficient of wall was assumed as that of the 
fin surface (i.e. NUw = Nu) for the sake of simplicity 
[9]. On the other hand, the following correlations can 
be employed for friction factor [14, 15]: 

, 
• ( o ) / )  

0,176+ (~__l)0.43+I.13(D/Sn)(Sn/Sp) 

× ReD °15 for in-line arrays (10a) 

o r  

0.47 ] ReD0.J6 
f =  1.0+ /Sn ~ 1 . 0 8 |  

for staggered arrays. (10b) 

The entropy generation number, N, is thereby a func- 
tion of nine dimensionless groups: two for the fin 
geometry (RED, W), four for the array parameter (Sp/Sn, Sn/D, N, V), and two for the working fluid and 
the heat duty (M (=  (k/2)~/2/prl/6), B). 

For a fixed fin array and a given heat duty, the last 
eight parameters were fixed. The minimum of Ns with 
respect to ReD can thereby be evaluated by solving 
ONs/~ReD = 0 graphically, while the corresponding 
optimal ReD.opt, can be subsequently obtained. 

3. RESULTS AND DISCUSSION 

3.1. Optimal Reynolds number 
Figure 2 shows an example of the Ns vs Reynolds 

number plot for the in-line and the staggered align- 
ments at fixed fin geometry. NsH (NsF) decreases 

(increases) with an increase in ReD for both the in- 
line (bold curves) and the staggered (dashed curves) 
arrays. An optimal Reynolds number results away 
from which the entropy generation rate would 
increase. The optimal ReD values read 2068 for the in- 
line or 1974 for the staggered alignment. The cor- 
responding entropy generation numbers are, respec- 
tively, 9.06 × 10 -5 and 9.36 × 10 -5, indicating a better 
'best' overall performance for the in-line alignment 
can be achieved than that for the staggered alignment 
in this specific example. It is also noted that in the 
range where ReD < ReD.opt, the in-line array would 
generate more entropy than does the staggered array. 
That is, the latter would be the better choice if the 
flow condition must be located in this region. Appar- 
ently, the situation would reverse when ReD > ReD,opt. 

In the following discussions, we will focus on the 
effects of geometrical factors on the second law per- 
formance. 

3.2. Slenderness ratio 
The effects of slenderness ratio W ( = L/D) on the 

entropy generation rate are shown in Fig. 3. ReD,opt 
increases with the decreasing slenderness ratio. 
However, the corresponding entropy generation num- 
ber decreases only slightly. This result is similar to 
that for a single pin-fin [11]. No slenderness ratio, W, 
for the fin array needs to be strongly recommended 
by the second-law analysis, if the crossflow condition 
can be specified at ReD = ReD,opt. 

The corresponding heat transfer characteristics 
from the first-law analysis are shown in Fig. 4. Note 
that only a mild decrease in effectiveness results as the 
Reynolds number increases. This is raised naturally 
from the simultaneous increase in both the heat fluxes 
from the fin surface and from the bare base if the 
fin does not exist at an increasing crossflow velocity. 
Owing to the slowly decreasing fin effectiveness 
obtained in the first-law analysis, a small fin Reynolds 
number is recommended (although not strongly), for 
example, 1000 if based on the data in Fig. 4. 

The optimal Reynolds numbers from Fig. 3 are 
also shown in Fig. 4 for comparison. Notably, when 
compared with the first-law analysis, second-law 
analysis has recommended a definitely best fin Rey- 
nolds number. Although when compared with the case 
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Fig. 2. Entropy generation number vs ReD, NsF and NsH are the contribution by hydrodynamic and heat 
transfer irreversibilities, respectively. Solid curves are for in-line array, while dashed curves are for staggered 

array. M =  100, B =  10 ~3, W = 5 ,  Sp /S ,=  l, Sn=  1, S , / D =  1.25, N = 2 0 ,  V =  10. 
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Fig. 3. Entropy generation number vs ReD under various W. Solid curves are for in-line array, while dashed 

curves are for staggered array. M = 100, B = 10 ~3, Sp/Sn = 1, SolD = 1.25, N = 20, V = 10. 
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Fig. 4. Fin effectiveness vs ReD under various W. Solid curves are for in-line array, while dashed curves are 
for staggered array. The solid symbols are the optimal Reynolds numbers obtained from Fig. 3. M = 100, 

B=10  13, Sp/S~= l,S,~/D=1.25, N= 20, V= IO. 

Reo = 1000, the fin effectiveness under Reo,op, is some- 
what less, as indicated in Fig. 4, however, the overall 
entropy generation number would be up to 1.7-4 times 
Ss,rnin if ReD = 1000. Notably, the so-called 'optimal '  
fin design based on the second-law analysis would 
usually be not as 'bad'  design in view of the first-law 
analysis (the fin effectiveness is still high). 

If based on the heat transfer argumentation, a large 
slenderness ratio is suggested by the first-law analysis, 
This conclusion is supported by the second-law analy- 
sis if ReD < ReD,op,. Nevertheless, in the range of 
ReD > Reo.opt, an opposite conclusion would be 
obtained. 

3.3. Fin spacing 
Figure 5 depicts the N, vs ReD plot with W = 5 and 

Sp/Sn = 1 and Sn/D as a parameter. For the staggered 
alignment, the optimal Reynolds number, Reo,opt, 
increases with decreasing S,/D. On the other hand, 
for the in-line alignment, the Reo,oot exhibits a 
maximum as S,/SD increases. 

The corresponding minimum entropy generation 
number is plotted against Sn/D in Fig. 6 with the heat 
dissipation number B as a parameter. Two things are 
noticeable: firstly, Ns,,,a, would increase mon- 
otonously with the increase in S,/D for the staggered 
alignment ; there is a minimum of Ns,m~, for the in-line 
alignment, Secondly the minimum entropy generation 

rate for the staggered alignment would be higher than 
that for the in-line alignment when Sn/D is larger 
than approximately 1.22. Below this critical value, the 
staggered alignment would be a better choice based 
on the second-law analysis. Interpretations will be 
given in the last sections. 

Figure 7 shows the N~ vs ReD plot under various 
Sp/S~ values with fixed W and Sn/D. For the in-line 
alignment, the optimal Reynolds number increases 
with decreasing Sp/S,. The corresponding entropy 
generation number follows a reversed trend. For  the 
staggered-aligned arrays, the Ns vs ReD curves almost 
coincide with each other. That is, the entropy gen- 
eration number is almost independent of  the Sp/Sn 
value. 

The corresponding N~,m~ values are demonstrated 
in Fig. 8 with the heat dissipation number B as a 
parameter, Clearly the minimum entropy generation 
number decreases with increasing Sp/S, for the stag- 
gered alignments. An opposite trend is observed for 
the in-line alignment. Like that demonstrated in Fig. 
6, there also exists a critical Sp/S, for each B value 
dividing the region in which the staggered or the in- 
line alignment is preferred. Interpretations for the 
Sp/Sn effects will also be given later. 

A fin array design with a lesser minimum entropy 
generation rate would be economically more pref- 
erable. With a fixed heat dissipation number and slen- 
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Fig. 5. En t ropy  genera t ion  n u m b e r  v s  R e  D under  var ious  S./D. Solid curves  are for in-line array,  while  

dashed  curves  are for s taggered array.  M = 100, B = 10 ~3, Sp/S, = l ,  W = 5, N = 20, V = 10. 
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Fig. 9. The map for the region within which the in-line 
or staggered alignment is preferred. M = 100, B = 10 ~3, 

W=5, N=20, V=IO. 

derness ratio, the condition under which the ratio 
between the minimum entropy generation number for 
staggered and in-line alignments is unity, can be cal- 
culated. Figure 9 provides a calculation example, for 
which the bold curves demonstrate the condit ion and 
the ratio of  minimum entropy generation numbers 
equals unity. The dot curve near the abscissa indicates 
the naturally geometrical restrictions. 

Notably from Fig. 9, the staggered array would be 
preferred in the region of  larger Sn/D and Sp/S°, while 
the in-line alignment becomes the better choice in the 
intermediate region. There exists a small region near 
the ordinate where the staggered alignment would be 
better again. 

More insights can be obtained on the basis of  the 
corresponding f ,  Nu, NsF,m m and NsH,min values under 
ReD = ReD,opt (listed in Table 2) for points A - E  shown 
in Fig. 9. For  example, the comparisons between 
points E and C, or points B and D, give the effects of  
S,/D under some Sp/S, ; while those between points B 

and E, or points D and C, give the effects of  Sp/Sn 
under a fixed Sn/D value. 

At point C in Fig. 9, both the Nu and the f for the 
in-line array are higher than those for the staggered 
array. The relatively h i g h e r f a n d  Nu values for the in- 
line array thereby prefer a somewhat lower optimal 
Reynolds number. The higher f value gives a larger 
Ns~,-,min for the in-line array. Although the Nu is also 
larger, the corresponding N~H,,,m for in-line array 
would still be greater owing to the relatively smaller 
Reynolds number (equation (7a)). This gives out  a 
higher N~.mm for in-line array and makes the staggered 
array a more preferable choice. 

Moving from point C to point E (decreasing So/D 
values with a fixed Sp/S,), owing to the reduction in 
fluid passage area, both t h e f a n d  Nu increase accord- 
ingly. The corresponding NsH,min and N~v,m,~ are both 
reduced according to the higher heat transfer rate. 
Since the relative magnitude of  increase in Nu (f)  is 
larger (less) for the in-line array, the rate of  reduction 
in NsF,min and N~H.,,m are all higher than the staggered 
array, which in turns gives out  a lower Ns,mi n for the 
in-line array and makes it a preferable choice. This 
can explain the critical S,/D value as observed in 
Fig. 6. 

Moving from point C to point D (decreasing Sp/Sn 
values at fixed Sr,/D), the Nusselt number increases 
for both arrays as for the case of  decreasing S,/D 
value. The friction factor, on the contrary, reduces 
rather than increases (although the dependence 
observed for the staggered array is very weak). This 
is possibly due to the shrinkage of  the wake flow when 
the distance between the rows are close. For  the in- 
line array, the corresponding low friction factor and 
higher Nu result in a higher ReD.opt. This would give 
out smaller N~u,m~, and N,v.m~, values when moving 
from point C to D. The trend for the staggered array 
is opposite. The net effect is to make the in-line array 
a better choice, which gives an explanation for the 
existence of  the critical S~/D as observed in Fig. 8. 

Comparison between points C, B and A in Fig. 9, 
reflects a combined effect of  reduction in S,/Sp and 
Sn/D values. A similar trend can be observed as dis- 

Table 2. Corresponding entropy generation numbers, Nusselt number and friction factor under ReD.opt for points A E shown 
in Fig. 9 

Point ReD,op~ Ns,mi,, Ns,,min N~F.mi, Nu( 2/ k ) f 

In-line arrays 
A 1906 1.045x10 4 5.646x10-5 4.805x10 5 3.147x10-3 2.939 
B 1 9 4 3  8.999x10 5 4.855x10 5 4.145x10-5 3.185z10 3 8.133x10 i 
C 1607 1.031x10 -4 5.543x10 5 4.771x10-5 2.826x10 3 8.211x10 i 
D 1 8 0 4  9.561x10 5 5.149x10 5 4.412x10 ~ 3.039x10 3 6.025x10 i 
E 1 7 7 9  9.475x10 -5 5.102xl0 5 4.373x10 5 3.013x10 3 1.023 

Staggered arrays 
A 2 0 8 5  8.889x10 -5 4.831x10 5 4.058×10 5 3.367x10 ~ 1.965 
B 1 9 7 5  9.680x10 -5 5.245x10 5 4.435x10 ~ 2.876x10 3 8.126x10 i 
C 1798 1.005x10 -4 5.430x10 5 4.624x10 ~ 2.521x10 ~ 6.023x10 i 
D 1816 1.026x10 4 5.548x10-5 4.710x10 5 2.750x10-3 6.013x10 
E 1 9 5 0  9.592×10 5 5.186x10-5 4.406x10 5 2.647x10-3 8.131x10-1 
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cussed above. Clearly, the preferred array changes 
from staggered to in-line alignment when moving 
from point C to point B. However,  since the friction 
factor increases significantly when the rows are very 
close [16] (point A), the values N~.m~n for both arrays 
increase accordingly. The magnitude of  increase in f 
for in-line array is larger than that for staggered array. 
This again makes the staggered array a better choice. 

4. CONCLUSIONS 

Second-law analysis on a pin-fin array under 
crossflow was conducted, from which the entropy gen- 
eration rate was evaluated, Increase in the crossflow 
fluid velocity would enhance the heat transfer rate and 
reduce the heat transfer irreversibility. Owing to the 
simultaneous increase in drag force exerting on the fin 
bodies, the hydrodynamic irreversibility increases as 
well. An optimal Reynolds number thereby exists 
over wide operating conditions. Optimal design/ 
operational conditions were searched for on the basis 
of  entropy generation minimization. Comparisons 
between the staggered and the in-line pin-fin align- 
ments were made in this report. 
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